Plasticity in sublesionally located neurons following spinal cord injury.

نویسندگان

  • Nicolas P Lapointe
  • Roth-Visal Ung
  • Pierre A Guertin
چکیده

Neuronal plasticity has been traditionally associated with learning and memory processes in the hippocampal regions of the brain. It is now generally accepted that plasticity phenomena are also associated with other kinds of cellular changes and modifications occurring in all areas of the CNS after injury or intense neuronal activity. For instance, spinal cord injuries have been associated with a series of cellular modifications and adaptations taking place distally in sublesional areas. Some of these modifications include changes in the expression of immediate early genes (e.g., c-fos and nor-1), TNF-alpha, preprodynorphin, neurotrophic factors (e.g., BDNF and NT-3), and several subtypes of transmembranal receptors (e.g., 5-HT(1A) and 5-HT(2A)). This review constitutes an update of the current knowledge regarding this broadly defined plasticity phenomenon that occurs spontaneously or can be modulated by training in sublesional segments of the spinal cord. Spinal cord plasticity is an increasingly popular field of research, believed by many as being a complex phenomenon that may contribute to the development of innovative therapeutics and rehabilitative approaches for spinal cord injured patients.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Expression implication of GDNF in ventral horn and associated remote cortex in rhesus monkeys with hemisected spinal cord injury

Objective(s): Glial cell line-derived neurotrophic factor (GDNF) can effectively promote axonal regeneration,limit axonal retraction,and produce a statistically significant improvement in motor recovery after spinal cord injury (SCI). However, the role in primate animals with SCI is not fully cognized. Materials and Methods:18 healthy juvenile rhesuses were divided randomly into six groups, obs...

متن کامل

Changes in afferent activity after spinal cord injury.

AIMS To summarize the changes that occur in the properties of bladder afferent neurons following spinal cord injury. METHODS Literature review of anatomical, immunohistochemical, and pharmacologic studies of normal and dysfunctional bladder afferent pathways. RESULTS Studies in animals indicate that the micturition reflex is mediated by a spinobulbospinal pathway passing through coordinatio...

متن کامل

Structural remodeling of the heart and its premotor cardioinhibitory vagal neurons following T(5) spinal cord transection.

Midthoracic spinal cord injury (SCI) is associated with enhanced cardiac sympathetic activity and reduced cardiac parasympathetic activity. The enhanced cardiac sympathetic activity is associated with sympathetic structural plasticity within the stellate ganglia, spinal cord segments T1-T4, and heart. However, changes to cardiac parasympathetic centers rostral to an experimental SCI are relativ...

متن کامل

The fate of neurons after traumatic spinal cord injury in rats: A systematic review

Objective(s): To reach an evidence-based knowledge in the context of the temporal-spatial pattern of neuronal death and find appropriate time of intervention in order to preserve spared neurons and promote regeneration after traumatic spinal cord injury (TSCI). Materials and Methods: The study design was based on Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA)-guided...

متن کامل

Neuronal-Glial Interactions Maintain Chronic Neuropathic Pain after Spinal Cord Injury

The hyperactive state of sensory neurons in the spinal cord enhances pain transmission. Spinal glial cells have also been implicated in enhanced excitability of spinal dorsal horn neurons, resulting in pain amplification and distortions. Traumatic injuries of the neural system such as spinal cord injury (SCI) induce neuronal hyperactivity and glial activation, causing maladaptive synaptic plast...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 98 5  شماره 

صفحات  -

تاریخ انتشار 2007